Querida abuela:
La Física no es una cuestión tan complicada como parece. En los últimos meses, habrás escuchado hablar sobre esa partícula que los científicos se afanan en con sus gigantescas máquinas en y de la que depende buena parte de nuestro conocimiento sobre el mundo. La llaman el bosón de Higgs. Hace una semana, los físicos del CERN anunciaron que tenían la partícula acorralada y que pronto podrían decirnos tanto si existe como si no. ¿Cómo es posible que aún no lo sepan?, te preguntarás. ¿Y cómo puede tener tanta importancia una partícula tan insignificante que ni siquiera la podemos detectar?
El asunto, querida abuela, se remonta a hace 13.700 millones de años. Entonces se formó la materia y se produjeron unos niveles de energía increíbles en lo que conocemos como Big Bang.
Pero vamos a saltarnos esta parte. Mucho después de aquello, nuestros científicos están intentando comprender de qué están hechas las cosas y, no menos importante, cómo permanecen unidas. Respecto a la primera pregunta, y tras muchos palos de ciego, los físicos han conseguido desentrañar el rompecabezas de la materia y ya tienen un catálogo muy interesante.
Las cosas están hechas de átomos, y dentro de estos átomos hay otras partículas más pequeñas como las que componen el núcleo, protones y neutrones, los electrones (que lo orbitan), los quarks, etc. Para encontrar nuevas partículas, los científicos las aceleran a una gran energía y las hacen chocar entre ellas en grandes colisionadores. Como la energía y la masa deben conservarse, cuando falta una parte al final del proceso los físicos saben que debe haberse creado una partícula nueva. Así se dedujo la existencia de otro personaje que se ha hecho muy popular últimamente, el famoso neutrino. Y así se busca el bosón de Higgs.
En cuanto a la forma en que se unen las cosas, después de muchas investigaciones sabemos que existen cuatro fuerzas fundamentales: la de la gravedad (la que hace que al pegar un saltito vuelvas a caer al suelo, por ejemplo), el electromagnetismo (que permite funcionar a los motores y a los teléfonos móviles), la fuerza nuclear fuerte (que mantiene unido el interior del núcleo de los átomos) y una cuarta fuerza conocida como fuerza nuclear débil y que aparecía en algunos procesos concretos, como el que se produce en los elementos radiactivos, como el uranio o el plutonio.
Pues bien, investigando este fenómeno, y en su afán por unificar las cosas, los científicos se dieron cuenta de que a altas energías, la fuerza débil y el electromagnetismo se comportaban igual, pero a bajas energías eran muy diferentes. La partícula responsable del electromagnetismo, el fotón, no tenía masa, pero las partículas responsables de la interacción débil, llamadas bosones W y Z, tenían una masa enorme. Es decir, a altas energías se comportaban igual que el fotón, como si no tuvieran masa, pero a bajas energías no. La pregunta que surgió entonces era aún más interesante. Ya sabíamos de qué están hechas las cosas y cómo permanecen unidas pero, ¿por qué tienen masa las partículas?
En 1964, un físico británico llamado Peter Higgs propuso una solución que otros desarrollarían más tarde: existía un campo, invisible pero presente en todo el universo desde el Big Bang, que era el responsable de darle masa a las cosas. ¿Cómo lo hacía? Para entenderlo, necesito que te imagines el universo como una gigantesca piscina. Todo lo que avanza en el agua se encuentra una resistencia, luego el agua (el campo de Higgs) es lo que les da la masa. Unas partículas encuentran mucha resistencia (tienen más masa) y otras no encuentran ninguna (como los fotones, la luz). Igual que el agua está compuesta de moléculas, ese campo de Higgs está compuesto de una serie de partículas hipotéticas, las conocidas como bosones de Higgs.
Para entenderlo, voy a adaptar un ejemplo que ponen los científicos del CERN. Imaginemos una sala llena de abuelas. Cada una de ellas sería un bosón y juntas compondrían el campo de Higgs (el agua del anterior ejemplo). Si entrara alguien muy famoso en la habitación, se producirá una expectación en torno a él que terminará traducida en cierta resistencia a su avance. En este caso el famoso sería como una partícula y el campo de Higgs serían las abuelas, que le harían ganar masa.
Mi amigo Ismael lo explicaba el otro día con una playa por la que avanzara un vendedor de helados con su carrito y que estuviera llena de niños invisibles. Los críos se arremolinarían en torno a él y le impedirían avanzar, dándole masa. En este caso los niños serían los bosones de Higgs.
¿Vas viendo por dónde van los tiros? Tranquila, aún estamos empezando y volveremos sobre este asunto. Para que lo entiendas mejor, debes saber que todo el conocimiento que te he expuesto anteriormente compone lo que los físicos conocen como Modelo Estándar de la Física. Se trata de una ecuación con muchísimas variables y funciona perfectamente para todo lo que nos proponemos. Y ahora sí, agárrate abuela, porque ésta es la ecuación:
¿Impresionada? No era mi intención asustarte, solo te he puesto la fórmula para que te fijes en un detalle y comprendas por qué se empeñan los científicos en buscar el bosón de Higgs. Vuelve a mirar la ecuación y fíjate en las "H". Ese valor representado en la fórmula es el bosón de Higgs y, aunque no lo hemos encontrado, es fundamental para que el Universo se comporte como se comporta, ya que cada vez que ponemos en marcha la ecuación, nuestras predicciones funcionan.
¿Por qué es tan difícil encontrar el bosón de Higgs? Aunque tenemos medidas indirectas de la existencia del campo de Higgs, hay que encontrar la partícula para tener la certeza de que existe. Pero esto es realmente difícil, porque cuando intentamos verlos, los bosones de Higgs se desintegran inmediatamente hacia otro tipo de partículas y no hay manera de registrarlo.
Para que te hagas una idea, la vida media (en reposo) de un bosón de Higgs de 125 GeV es de una billonésima de billonésima de segundo, un yoctosegundo (¡qué palabra para presumir con las amigas!). Lo que están haciendo con esa gran máquina de Suiza, el LHC, es hacer que muchas partículas choquen entre sí a gran velocidad y ver las huellas que deja tras de sí el bosón. De momento, las pruebas no son lo suficientemente precisas para encontrarlo pero sí para "acorralarlo", ya saben en qué abanico de energía puede aparecer y como lo irán estrechando en los próximos meses, pronto sabemos si esa "H" de la ecuación existe, si en realidad son varias partículas en vez de una o si no hay rastro del famoso bosón y a los físicos les toca volver a echar cuentas.
Veremos qué sucede a lo largo del año de 2012 y volveré a contarte qué han encontrado y si sabemos un poquito más de nuestro universo o seguimos hechos un lío.
Hasta entonces, cuídate mucho. Recuerdos al abuelo.
Antonio
*PD. Ninguna abuela resultó herida durante la elaboración de este artículo. Si tu abuela es licenciada en física y no necesita que su nieto le explique nada, échale la culpa a Einstein, por basarse en estereotipos caducos e injustos sobre las abuelas.
http://noticias.lainformacion.com
SEGUNDA EXPLICACION
El bosón de Higgs ("la partícula de Dios" en 9 claves
La física vive un día histórico, pues dos equipos del CERN podrían anunciar el descubrimiento de esta partícula tan estudiada
Pero, antes de nada, demos un pasito atrás y comencemos por una pregunta más sencilla:
1.- ¿De qué está formada la materia?
La materia esta formada por átomos.
Un átomo es como un Sistema Solar en miniatura: tiene un gran núcleo central (compuesto por protones y neutrones) y a su alrededor giran los electrones.
2.- ¿De qué estan formados los protones y los neutrones?
Los protones y los neutrones están formados de unas partículas más pequeñas que se llaman quarks.
Hay 6 tipos de quarks y fueron bautizados con nombres un poco extraños: el quark "arriba", el quark "abajo", el quark "encanto", el quark "extraño", el quark "cima" y el quark "fondo".
Un protón está formado por 2 quarks "arriba" y 1 quark "abajo". Un neutrón está formado por 1 quark "arriba" y 2 quarks "abajo".
3.- ¿Y de qué están formados los electrones?
Al contrario que los protones y los neutrones, los electrones son partículas elementales, es decir, no se pueden dividir más.
4.- Vale, entonces el electrón y los quarks son partículas elementales, ¿cuál es el problema?
El problema es que no comprendemos por qué estas partículas tienen masas tan diferentes. Por ejemplo, un quark "cima" pesa 350.000 veces más que un electrón. Para que os hagáis una idea de lo que significa este número: es la misma diferencia de peso que hay entre una sardina y una ballena.
5.- ¿Cuál es la solución a este problema?
En 1964, el físico inglés Peter Higgs, junto a otros colegas, propuso la siguiente solución: todo el espacio está relleno de un campo (que no podemos ver) pero que interacciona con las partículas fundamentales. El electrón interactúa muy poquito con ese campo y por eso tiene una masa tan pequeña. El quark "cima" interacciona muy fuertemente con el campo y por eso tiene una masa mucho mayor.
Para comprender esto, volvamos a la analogía de la sardina y la ballena. La sardina nada muy rapidamente porque es pequeñita y tiene poco agua alrededor. La ballena es muy grande, tiene mucho agua alrededor y por eso se mueve más despacio. En este ejemplo, "el agua" juega un papel análogo al "campo de Higgs".
Si lo pensáis despacio, la teoría de Higgs es muy profunda pues nos dice que la masa de todas las partícula está originada por un campo que llena todo el Universo.
6.- ¿Problema resuelto?
No tan rápido, caballeros. En física, una teoría sólo es válida si podemos verificarla con experimentos. La historia de la ciencia está repleta de teorías hermosísimas que resultaron ser falsas.
El campo de Higgs es sólo una teoría. Para comprobarla necesitamos encontrar la partícula asociada al campo de Higgs: el llamado "bosón de Higgs".
7.- ¿Por qué es tan difícil observar el bosón de Higgs?
Cuando queremos detectar el bosón de Higgs nos enfrentamos a 2 problemas fundamentales:
1)Para generar un bosón de Higgs, se necesita muchísima energía. De hecho, se necesitan intensidades de energía similares a las producidas durante el Big Bang. Por eso hemos necesitado construir enormes aceleradores de partículas.
2) Una vez producido, el bosón de Higgs se desintegra muy rápidamente. Es más, el bosón de Higgs desparece antes de que podamos observarlo. Sólo podemos medir los "residuos" que deja al desintegrarse.
Estos dos problemas son de una complejidad tan tremenda que para resolverlos hemos necesitado el trabajo de miles de físicos durante varias décadas.
8.- ¿Y el término "la particula de Dios"? ¿Acaso no éramos científicos?
El origen del apelativo "la partícula de Dios" es una de mis anécdotas favoritas en física.
Allá por los años 90, Leo Lederman, un Premio Nobel, decidió escribir un libro de divulgación sobre la física de partículas. En el texto, Lederman se refería al bosón de Higgs como "" ("La Partícula Puñetera" por lo difícil que resultaba detectarla.
El editor del libro, en un desastroso arranque de originalidad, decididió cambiar el término "The Goddamn Particle" por "The God Particle" y así "La Partícula Puñetera" se convirtió en "La Partícula de Dios".
9.- ¿Una vez se confirme la teoría de Higgs, la física de partículas se ha terminado?
No. La detección del bosón de Higgs es sólo el comienzo de nuevas aventuras (¡los físicos seguiremos teniendo trabajo por mucho tiempo!).
Todavía quedan decenas de problemas que estamos muy lejos de resolver. Algunos ejemplos: ¿qué es la materia oscura? ¿cómo formular una teoría cuántica de la gravedad? ¿los quarks y los leptones son verdaderamente partículas elementales o tienen una subestructura? ¿todas las fuerzas se unifican a una energía suficientemente alta?
Al final, nuestro trabajo como científicos consiste en avanzar, aunque sólo sea un pasito, para que las generaciones futuras comprendan, un poquito mejor que nosotros, cómo funciona este hermoso Universo que nos rodea.
(Puede consultar el texto original en el blog 'Principia Marsupia')
Alberto Sicilia es investigador en física teórica
TERCERA EXPLICACION
El bosón de Higgs para no iniciados: la explicación definitiva
Alegrémonos, la pieza que falta del edificio de una de las partes del conocimiento de la naturaleza está casi confirmada
El catedrático de Física Aplicada de la Universidad de Alcalá, Antonio Ruiz de Elvira, explica el alcance del hallazgo presentado hoy por el Centro Europeo de Física de Partículas (CERN).
Ya vimos hace unas semanas que es esto del 'Boson de Higgs'. ¿Existe? Se construyó, con un coste de unos 4.000 millones de euros una maquina enorme (el LHC) para tratar de encontrar esa partícula cuya existencia es efímera. Realmente no es una partícula sino la excitación de un campo, como el hocico del pez que roza la superficie en el estanque (el campo) y desaparece de nuevo. Si el estanque es como el Mediterráneo y el pez toca esa superficie una vez cada año, es difícil poder observar el evento. Hay que estar muy, pero que muy atento.
En el LHC se fuerza a que millones de peces (hablando coloquialmente) saquen el hocico al mismo tiempo. Lo que se ha presentado hoy en Australia, por el portavoz de uno de los grupos de trabajo del LHC es el análisis estadístico de las ondas que dejan esos peces al rozar la superficie del agua. Se hacen chocar x-llones de protones y se miden los efectos de la desaparición de los Higgs que se han podido excitar en las colisiones. Es como encontrar granos de arena roja entre montañas de arena de todos los colores, incluidos tonos muy parecidos al rojo que queremos hallar. El Higgs, si existe, debe tener una masa, medida en unidades de energía, cercana a 125 GeV (miles de millones de electrón-voltios) y debe desaparecer dejando rastros de cinco tipos distintos. Hay que pasar los x-llones de medidas por toda clase de filtros para eliminar todo aquello que no es lo adecuado.
Lo que se ha descrito hoy en Australia es que en dos de esos tipos de rastros, los que generan dos fotones (ondas electromagnéticas) y cuatro taus (excitaciones del mismo campo que desaparecen en una décima de billónesima de segundo) hay señales muy convincentes de que lo que ha desaparecido generando estas excitaciones es algo con una masa de 125.3 GeV y con error en la medida inferior a 4. 9 desviaciones estándar.
Es un signo casi inequívoco de la existencia del Higgs. Se tiene que confirmar por equipos independientes. Pero parece que sí, que el Higgs existe (durante una billonésima de billonésima de segundo), como existe la onda que deja el hocico del pez en la superficie del agua.
Alegrémonos: La pieza que falta del edificio de una de las partes del conocimiento de la naturaleza está casi confirmada. Esto es excitante, muy excitante porque nos permite dejar de dudar y avanzar hacia dos preguntas básicas mucho mas interesantes que la mera existencia de ese bosón de Higgs:
1) ¿Por qué existe el campo de Higgs? ¿De donde sale? y 2) Todo el modelo estándar basado entre otras cosas en el campo de Higgs, sirve para explicar (o casi explicar) por qué el protón es una partícula estable y el neutrón se desintegra en un protón y un electrón (más un antineutrino). Ahora, ¿Sirve eso para explicar la vida, la conciencia, las estrellas y las galaxias?
La ciencia no es el conocimiento exhaustivo de cada una de las partes de la naturaleza, sino el engarce de cada una y todas ellas para generar el edifico completo de la misma. Gracias a haber encontrado el Higgs (casi) podemos dedicar ahora nuestras energías a avanzar en estas dos preguntas que son las realmente importantes.
http://www.elcultural.es
No hay comentarios.:
Publicar un comentario